Übungsgruppe 4 1. Juli 2017

Datenstrukturen und Algorithmen

Abgabe 8 Abgabe: 28.06.2017

Georg C. Dorndorf Matr.Nr. 366511 Adrian C. Hinrichs Matr.Nr. 367129

# 5	# 6	# 7	# 8	\sum

Aufgabe 5

 $\mathbf{a})$

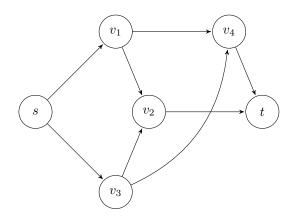


Abbildung 1: Durch G beschriebener Graf

b)

 ${\cal G}$ ist offensichtlich Kreisfrei (Siehe Abbildung 1).

c)

G ist mit b) Kreisfrei also ist G nach VL topologisch sortierbar. Es existieren folgende bijektive Abbildungen $\Phi_1: V \to \{0, 1, 2, 3, 4, 5\}, \Phi_2: V \to \{0, 1, 2, 3, 4, 5\}$:

$$\begin{split} \Phi_1: V \to \{0,1,2,3,4,5\}, & s \mapsto 5, v_1 \mapsto 3, \\ v_3 \mapsto 4, v_2 \mapsto 2, \\ v_4 \mapsto 1, t \mapsto 0 \end{split}$$

$$\begin{split} \Phi_2: V \to \{0,1,2,3,4,5\}, & s \mapsto 5, v_1 \mapsto 4, \\ & v_3 \mapsto 3, v_2 \mapsto 2, \\ & v_4 \mapsto 1, t \mapsto 0 \end{split}$$

Die Bijektion Φ_1 ist also offensichtlich nicht eindeutig.

Aufgabe 6

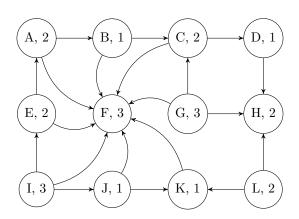


Abbildung 2: Der initiale Graph

Schlüssel	eft
<u>H</u>	2
$\underline{\mathrm{D}}$	1
\mathbf{F}	3
$\underline{\mathbf{C}}$	5
$\underline{\mathbf{B}}$	6
$\underline{\mathbf{A}}$	8
$\underline{\mathbf{E}}$	10
G	8
K	4
J	5
$\overline{\mathbf{I}}$	13
${ m L}$	6
	'

Tabelle 1: (Eine) topologische Ordnung der Knoten, mit eft

Für den topologisch Sortierten Graph siehe Figur 10 am Ende.

Der—in der Tabelle durch unterstreichung markierte—kritische Pfad ist ebenfalls in Abbildung 11 am Ende markiert.

Aufgabe 7

Abbildung 3: Die Variablen colour und nach der ersten Ausführung von DSF1

 Color:
 B B W B B B B B B B B B B

 S:
 12 8 9 5 4 2 13 11 7 10 6 1

Abgabe: 28.06.2017

Abbildung 4: Die Variablen colour und S nach der zweiten Ausführung von DSF1

B B B B B B B | B | B | B | B | B | color: S: 2 | 13 | 11 7 10 | 6 | 1 | 3 | 12 | 8 | 9 | 5 | 4

Knoten mit geradem Grad größer als 0 ist: die Knoten q,r,x und z haben ungeraden Grad.

Graph G_4 enthält keinen Eulerkreis, da die Anzahl der Knoten mit geradem Grad größer als 0 ist: die Kntoen r und w haben ungeraden Grad.

b)

Abbildung 5: Die Variablen color, S und scc nach der

ersten Ausführung von DSF2

Ein Eulerkreis in G_2 ist:

 $r\mapsto y\mapsto x\mapsto w\mapsto z\mapsto r\mapsto x\mapsto z\mapsto y\mapsto w\mapsto r$

color: S: 8 9 5 4 2 | 13 | 11 | 7 | 10 | 6 | 1 **c**) scc:

Graph G_1 enthält keinen Eulerpfad, da er nicht zusammenhängend ist.

Abbildung 6: Die Variablen color, S und scc nach der zweiten Ausführung von DSF2

Graph G_3 enthält keinen Eupfad, da die Anzahl der Knoten mit geradem Grad weder 0 noch 2 ist: die Knoten q,r,x und z haben ungeraden Grad.

color: S: 12 | 8 | 9 | 5 | 4 | 2 | 13 | 11 | 7 | 10 | 6 scc:

Da ein Eulerkreis per Definition ein offener Eulerzug (Eulerpfad) ist, ist der Eulerkreis in G_2 aus Aufgabenteil b ein Eulerpfad.

Abbildung 7: Die Variablen color, S und scc nach der dritten Ausführung von DSF2

Es liegt folgender Eulerpfad in G_4 :

 $r \mapsto x \mapsto y \mapsto z \mapsto x \mapsto w \mapsto r \mapsto q \mapsto z \mapsto w$

color: S: 12 | 8 | 9 | 5 | 4 | 2 | 13 | 11 | 7 | 10

scc:

Abbildung 8: Die Variablen color, S und scc nach der vierten Ausführung von DSF2

color: S: 12 | 8 | 9 | 5 | 4 | 2 | 13 | 11 1 | 1 | 3 | 0 | 0 | 6 | 7 | 0 | 0 | 6 | 7 | 0 | 7

Abbildung 9: Die Variablen color, S und scc nach der fünften Ausführung von DSF2

color: B | B | B | B | B | B | B | B | B | B S: 12 8 9 5 1 | 1 | 3 | 4 | 4 | 6 | 7 | 4 | 4 | 6 | 7 | 4 | 7 scc:

ergeben sich also folgende starken Zusammenhangskomponenten Graphen des $\{3\}, \{1,2\}, \{6,10\}, \{7,11,13\}, \{4,5,8,9,12\}.$

Aufgabe 8

a)

scc:

Graph G_1 enthält keinen Eulerkreis, da er nicht zusammenhängend ist.

Graph G_2 enthält einen Eulerkreis (s. b))

Graph G_3 enthält keinen Eulerkreis, da die Anzahl der

Abbildungen

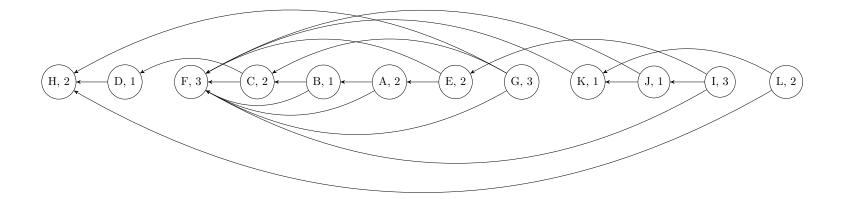


Abbildung 10: Topoligisch Sortierter Graph

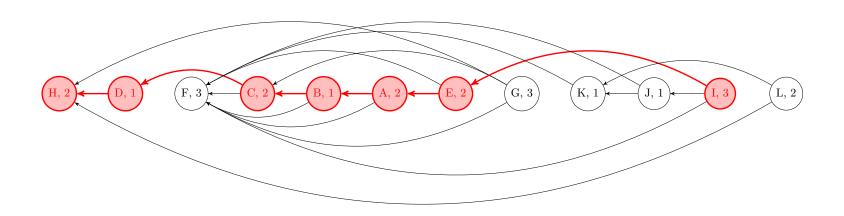


Abbildung 11: Topoligisch Sortierter Graph, mit einem markiertem kritischen Pfaden